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NMR diffusion experiments employing pulsed field gradients are well established as sensitive
probes of the displacement of individual nuclear spins in a sample. Conventionally such
measurements are used as a measure of translational diffusion, but here we demonstrate that under
certain conditions rotational motion will contribute very significantly to the experimental data. This
situation occurs when at least one spatial dimension of the species under study exceeds the root
mean square displacement associated with translational diffusion, and leads to anomalously large
apparent diffusion coefficients when conventional analytical procedures are employed. We show
that in such a situation the effective diffusion coefficient is a function of the duration of the diffusion
delay used, and that this dependence provides a means of characterizing the dimensions of the
species under investigation. © 2007 American Institute of Physics. �DOI: 10.1063/1.2759211�

I. INTRODUCTION

NMR experiments employing pulsed field gradients
�PFGs� have been used for many years to measure the diffu-
sion coefficients of species in solution.1 PFG NMR experi-
ments directly measure the net displacement of nuclear spins
during a defined delay, and such displacements can be related
to the translational diffusion coefficients of the spins that
give rise to the resonances in question.2 As a noninvasive
solution-state technique that yields information on the size of
the species under study, this is a highly versatile experiment
whose uses include probing ligand-receptor interactions,3,4

dissociation constants,5 membrane interactions,6,7 and the
folding and aggregation of peptide and protein molecules.8–11

The most common experimental approach to measuring
such diffusion coefficients involves the use of a spin echo
�SE�,2 and the resulting PFGSE experiments have been
widely applied. By the end of the PFGSE pulse sequence,

observable magnetization acquires a phase term, Î−e−i���z,
where �z is the net displacement of a spin during the experi-
ment. The length scale is set by ��=G��, the inverse of the
pitch length generated by the pulsed gradient of field strength
G and duration �, where � is the gyromagnetic ratio of the
observed nucleus. To obtain an expression for the observed
signal intensity of a sample, this term must be integrated
over all spins in the system, where P��z� is a function that
describes the probability of a given displacement occurring
within the sample during the experiment. The diffusion
weighted signal intensity, Si, is then given by

Si = �
−�

+�

Î−P��z�e−i���zd�z . �1�

For a single species diffusing under Brownian motion
for a time �, from the central limit theorem Ptrans��z�
= �1/2��DT��e−�z2/4DT�, where the mean square displace-
ment is related to the translational diffusion coefficient DT,
through ��z2�trans=2DT�. � is the diffusion delay, during
which magnetization is stored on the z axis, while the nuclear
spins diffuse. Integration of Eq. �1� and setting �=Gmax��
yields the following equation, which relates the PFGSE sig-
nal intensity Si, to the signal intensity obtained in the absence
of the gradients, S0:

Si = S0e−�2DT��G/Gmax�2
. �2�

This is the Stejskal-Tanner �ST� equation, and a plot of
ln�Si /S0� /�2� against �G /Gmax�2 yields a straight line of gra-
dient −DT,12,13 where G, �, and � are experimental variables.
When the duration of the applied gradients is considered in
more detail, �=��−� /3, where � is the effective delay be-
tween the two applied gradients. This relationship will be
explicitly assumed in this work.

Diffusion coefficients of proteins in the 10–30 kDa
range, typical of the systems that are subject to studies by
NMR spectroscopy, are on the order of 10−6 cm2 s−1, with an
RH value of several nanometers.14 For an experimental dif-
fusion delay of 50 ms, the corresponding root mean square
displacement, ���z2�, is 4.4 �m and so is entirely dominated
by translational diffusion. For larger molecular systems how-
ever, where the radius of hydration, RH, is comparable with
the net displacement due to translational diffusion, rotational
diffusion will contribute to the displacement function P��z�,
and so contribute to the measured signal attenuation in the
NMR experiment. By considering the effects of combined
rotational and translational diffusion on P��z�, through Eq.
�1�, we arrive in the present study at novel expressions �Eq.
�11�� that describe the signal decay in NMR diffusion mea-
surements. These expressions deviate from the form pre-
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dicted in Eq. �2� and indicate that the apparent diffusion
coefficient becomes a function of �. In this paper we de-
scribe the analysis that gives rise to this conclusion and con-
sider its significance for the characterization of macromo-
lecular dimensions.

II. RESULTS

A. Calculation of P„�z… for rotating systems

Consider two spins placed within a hard sphere of radius
r, one at the center and the other on the surface of the sphere.
If during the diffusion time in a PFGSE experiment, the
sphere rotates freely, then the measured displacement along
the z axis for a spin on the surface of the sphere will differ
from that of a spin at the center, as illustrated in Fig. 1�a�.
For the center of mass, the displacement will be given by
Ptrans��z�= �1/�2���z2��e−�z2/2��z2�. The function describing
the behavior of a spin on the surface of the sphere requires
further consideration. The effect of a single rotation from �1

to �2, where the angles are defined with respect to the z axis,
is to shift the translational distribution function by a constant
value �zrot=r�cos �2−cos �1�, illustrated in Fig. 1�b�. The
width of this distribution function will not be affected by
rotation, just the position of its maximum. For each displace-
ment of the center of mass in the Brownian ensemble, the
point on the sphere will undergo every possible rotation from
every possible starting position, providing the time of the
diffusion experiment � is large. Only the displacement along

the z axis is measured in the PFGSE experiment, so only the
contribution of rotation to the displacement along the z axis
need be considered in this context.

Defining u as the vector connecting the origin and the
point on the sphere in the laboratory reference frame as
shown in Fig. 1�a�, the rotational autocorrelation function
�u�0� ·u�t�� will tend to zero in the limit of t→�, indicating
that �1 and �2 are completely independent. In this limit, the
degeneracy of a given value of � on the sphere is propor-
tional to the circumference of the circle defined by the inter-
section of the sphere and the cone defined by �. The prob-
ability of each starting angle is therefore P��1�=sin �1d�1

and each ending position P��2�=sin �2d�2. We can write the
probability of a given �1→�2 as P��1 ,�2�= P��2 	�1� · P��1�
= P��2� · P��1�. In this limit, we can calculate the rotational
displacement probability function for a point on a sphere of
radius r by imposing simply that the rotation leads to the
required �zrot,

Prot��zrot� = �
�1=0

� �
�2=0

�

sin �1 sin �2

	��r�cos �2 − cos �1� − �zrot�d�1d�2

= �
−1

1 �
−1

1

��r�u − v� − �zrot�dudv

=
1

2r

1 −

	�zrot	
2r

� , �3�

FIG. 1. �Color online� �a� Illustration of how rotational motion contributes to the displacement function of a point at distance r from the center of a sphere.
�b� When this single rotation is considered in addition to a translational diffusion, it can be seen that it acts to shift the Gaussian translational displacement
distribution by a constant distance �zrot. �c� Ptotal��z� for spheres of radii 1 �m �red�, 500 nm �green�, and 50 nm �blue� for �=100 ms using the explicit form
of Eq. �5� given in Appendix A. For each sphere, the distribution in the absence of rotation is shown, together with the distribution obtained in the limit of
unrestricted diffusion. Remarkably, the displacement function for the rotating 1 �m sphere closely resembles that of the 50 nm sphere. The inset shows the
difference between the displacement distribution functions in the static and rotating cases. For spheres of radii 50 nm, there is no difference between these two
cases. For larger spheres, rotational motion promotes an increase in longer displacements at the expense of shorter displacements. �d� Inset: simulated
Prot��zrot� restricted distribution functions for rods of length 5 �m and radius 10 nm, calculated as described in Sec. IV. Distribution curves are drawn for �
from 100 ms to 10 s �black� and compared to an unrestricted diffusion simulation �red�. These values are fitted to Eq. �3� to obtain an effective radius, and
plotted against � in the main figure �black points�. These values are compared with the theoretical estimate for reff from Eq. �7� �red� and that for a rod of
length 1 �m �green� which reaches its unrestricted diffusion limit much more rapidly than a 5 �m rod.
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where we have integrated over the delta function. This trian-
gular probability function can also be obtained by a simple
Monte Carlo simulation, where we draw random start and
end vectors on a unit sphere, and construct a histogram of
�zrot �Fig. 1�d�, inset, red�. The average squared displacement
of this distribution is given by

��zrot
2 � =

�−2r
2r �z2Prot��z�d�z

�−2r
2r Prot��z�d�z

=
2

3
r2. �4�

The combined probability of a given displacement is
therefore the convolution of the translational and rotational
displacement probability distributions

Ptotal��z� = �
−�

�

Prot�
�Ptrans��z − 
�d


=
1

8��DT�
�

�
=−�

� �
�1=0

� �
�2=0

�

sin �1 sin �2��r�cos �2 − cos �1� − 
�e−��z − 
�2/4DT�d�1d�2d


=
1

8��DT�
�

�1=0

� �
�2=0

�

sin �1 sin �2e−��z − r�cos �2 − cos �1��2/4DT�d�1d�2. �5�

This result shows, importantly, that the distribution func-
tion is no longer Gaussian as it was for purely translational
diffusion. The integral form of the above equation can be
expressed in a closed form in terms of error functions, the
result of which is given in Appendix A. The mean squared
displacement of a given spin undergoing both rotational and
translational motion then becomes

��ztotal
2 � =

�−�
� �z2Ptotal��z�d�z

�−�
� Ptotal��z�d�z

=
2

3
r2 + 2DT� . �6�

As both translational and rotational probability functions
are independent, we obtain the linear sum of second mo-
ments. The displacement functions for spheres with radii of
1 �m, 500 nm, and 50 nm are shown in Fig. 1�c�, which
compares the normalized functions in the freely rotating and
the static limits, and Fig. 1�c� �inset� shows the difference
between the two. The distribution functions for the 50 nm
spheres are essentially unaffected by the incorporation of ro-
tational motion, but those for the 500 nm and 1 �m spheres
are found to have a significant contribution from such mo-
tion. Remarkably, the 1 �m sphere has a displacement func-
tion with a root mean squared displacement similar to that of
the 50 nm sphere. Figure 1�c� �inset� shows quantitatively
that the probability of zero displacement is lowered, and that
the probability of longer displacements increases. The dis-
placement distributions when rotational effects become sig-
nificant are no longer Gaussian, and thus rotational motion
acts to increase the apparent diffusion of a nuclear spin.

1. The effect of restricted diffusion on P„�z…

For Brownian rotation over finite times, the rotational
autocorrelation function �u�0� ·u�t�� can be expressed
analytically15,16 as �cos ��=e−2DR� where � is the angle sub-
tended between the initial and final vectors, � is the diffusion
delay, and DR is the rotational diffusion coefficient. At finite
times, the final angle �2 is no longer independent of the start
angle �1, as illustrated in Fig. 4 in Appendix B. Only when

the diffusion delay becomes large do we recover the previ-
ously described situation of independent starting and ending
positions.

Although an analytical form of the displacement prob-
ability function in this regime of finite diffusion delays is not
easily obtained, we can on the basis of a simple geometrical
model �proof in Appendix B� calculate the average displace-
ment due to rotational motion for the general case as

��zrot
2 � = 2

3r2�1 − e−2DR�� . �7�

Interestingly, this average does not depend on a distribu-
tion function for the angle � separating the starting and end-
ing orientations of the vector. Calculating the probability dis-
placement function for combined rotational and translational
motion in the limit �u�0� ·u�t��= �cos ��=e−2DR� is compli-
cated by the fact that Prot��zrot� is a function of time in this
regime. By comparing Eqs. �4� and �7� we can incorporate
the time dependent rotation by using a reduced radius, reff

=r�1−e−2DR��1/2, and so �1 and �2 can still be considered to
be independent.

We can simulate Prot��zrot� for restricted diffusion using
a Monte Carlo method, and by drawing rotation angles � that
satisfy the distribution �cos ��=e−2DR� a histogram of �zrot

can be calculated �see Sec. IV�. The simulated distribution
functions for Prot��zrot� �Fig. 1�d� inset, black� show the same
triangular distribution as for the case of unrestricted rotation,
but the limits no longer span the interval �−2r ,2r�. Fitting
the distributions to Eq. �3�, we can estimate reff from the
maximal displacement �Fig. 1�d�, black points� and this esti-
mate is in excellent agreement with the theoretical value for
reff from Eq. �7� �Fig. 1�d�, red�. Thus, the substitution
of r for the reduced radius reff=r�1−exp�−2DR��� into Eq.
�5� provides a convenient method of estimating the ef-
fects of restricted diffusion. The restricted rotation factor
�1−exp�−2DR��� is shown in Fig. 2�a� for spheres �black

114505-3 Rotational and pulsed FG-diffusion J. Chem. Phys. 127, 114505 �2007�
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surface� and rods �white surface�. For short times and large
particles this factor deviates from unity, as rotation becomes
restricted.

Ptotal��z� for any arbitrary rigid geometry can now be
considered. All points on the object under investigation will
have the same translational and rotational diffusion coeffi-
cients. Each point that defines the system is considered to be
a single point on a sphere. Summing over the N point spheres
that map out the geometry will then give the displacement
function for the system as a whole such that Ptotal

arb ��z�
=1/NNPtotal��z�. A common and important geometry that is
often of experimental interest is that of the rigid rod of length
L. The rod here is considered as a collection of spheres of
radii −L /2 to L /2. The displacement probability distribution
is therefore given by Ptotal

rod ��z�=2/L�r=0
L/2 Ptotaldr. The mean

squared displacement can be calculated by integrating over
Eq. �7�,

��ztotal
2 �rod =

2

L
�

r=0

L/2

��ztotal
2 �dr

=
1

18
L2�1 − e−2DR�� + 2DT� . �8�

The displacement due to translational diffusion will be
constant for all points on the rod. Points near the center of
the rod will experience less displacement due to a given ro-
tation than a point near the end of the rod. The ratio of the
rotational root mean square displacement of the end of a rod
�a sphere of radius L /2� and the full length rod hence is

��zrot
2 �rod

��zrot
2 �sphere

=
��zrot

2 �rod

��zrot
2 �rodend

=
1

3
. �9�

This approach can be generalized to any arbitrary geom-
etry. A treatment applied to spheroidal geometry is presented
in Appendix C.

B. Derivation of NMR observables from rotational
P„�z… functions

1. Application to a point sphere

The effect of rotational diffusion and the resulting non-
Gaussian displacement probability functions on the NMR ex-
periment can be assessed by substituting the rotating P��z�
expressions into Eq. �1� and integrating over the ensemble.
For a point on a sphere, using Eq. �5� and noting DT� is
positive, the NMR intensity after a gradient echo, Si, is re-
lated to the signal seen in the absence of a gradient echo, S0,
by

Si = S0�
−�

+�

Ptotal��z�e−i�d�zd�z

=
S0

4
�

�1=0

� �
�2=0

�

sin��1�sin��2�

	e−DT�2−ireff��cos �2−cos �1�d�1d�2. �10�

The imaginary part of the integral vanishes leading to
the conclusion that size effects will not add gradient depen-
dent phase terms to the expression. Evaluation of this inte-
gral yields the following important result:

Si = S0
sin2��r�1 − e−2DR��1/2�

�2r2�1 − e−2DR��
e−DT�2�. �11�

This function is the product of a Stejskal-Tanner factor,

��G ,� ,� ,L�=e−DT�2�, and a preexponential factor, a geom-
etry dependent term ��G ,� ,� ,L�. � is shown in Fig. 2�b� for
spheres �black surfaces� in the freely rotating limit �red lines�
and in the restricted diffusion limit for �=5 s �blue lines�. As
� deviates from unity, rotational effects will contribute to the
PFGSE measurement. When the NMR signal is normalized
to that acquired in the absence of gradients, S0, we obtain

FIG. 2. �Color online� Rotational diffusion factors for spheres �black surfaces� and rods �white surfaces�. �a� The restricted diffusion factor �1−e−2DR�� from
Eq. �7�. When this factor equals unity, rotations are unrestricted and �1 is independent of �2. For short diffusion delays and larger particles, the factor is less
than unity, and rotations are restricted. �b� The behavior of the preexponential factor �. When � equals unity, the ST equation is being obeyed, and rotational
motion will not contribute to NMR diffusion measurements. The surfaces with red lines are calculated in the freely rotating limit, and the surfaces with blue
lines are calculated for restricted diffusion, with �=5 s for both spheres and rods. Increasing � causes the surface in the restricted case to tend towards that
of the freely rotating limit, and decreasing � causes it to tend to the static limit of unity. When �1, i.e., where species are larger than 1 �m, rotational motion
will significantly contribute to the observed signal attenuation measured in a PFGSE experiment.

114505-4 Baldwin et al. J. Chem. Phys. 127, 114505 �2007�
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ln
Si

S0
= − DT�2� + ln

sin2��r�1 − e−2DR��1/2�
�2r2�1 − e−2DR��

. �12�

Two limiting cases are particularly interesting. When ei-
ther the rotational diffusion coefficient or the diffusion delay
are large, the effective radius of a sphere increases to its
exact radius, leading to the following expression for the
NMR data in the freely rotating limit:

lim
�Dr→�

Si = S0
sin2 �r

�2r2 e−DT�2�. �13�

Here, the preexponential factor is no longer a function of
the diffusion delay, but the ratio of the radius of the sphere
and the length scale set by the pitch of the magnetization
helix plays the dominant role. Where the product �r is small,
the preexponential factor reduces to unity and Eq. �13� re-
duces to Eq. �2�,

lim
�r→0

Si = S0e−DT�2�. �14�

This expression reflects the fact that rotational motion
will make no contribution to the PFGSE experiment when
the species under consideration is small, and we recover the
ST equation. In the limit where �r is small but not negli-
gible, the signal intensity can be approximated by

lim
�r→0

ln
Si

S0
= 
− DT −

r2�1 − e−2DR��
3�

��2�

= − Deff
sphere�2� ,

�15�

Deff
sphere = DT +

r2�1 − e−2DR��
3�

.

Thus intensity will decay with a single exponential func-
tion, with the effective diffusion coefficient, Deff, not simply
the translational diffusion coefficient as predicted by the ST
equation, but a function of � when �r2 /3���DT. The decay
deviates from monoexponential with a term in �4R4. Experi-
mentally therefore, monoexponential decays are predicted
with Deff expected be larger for shorter values of � as spins
at a large distance from the center of mass will appear to
diffuse much more quickly than in the case when diffusion
depends solely on the translational motion of the particle
under consideration. A similar result can be derived for rigid
rods as we now show.

2. Application to a rigid rod

By integrating Eq. �11� we arrive at the following result
for the total NMR signal intensity from a rigid rod of length
L:

Ti = 2S0�
r=0

L/2 sin2��r�1 − e−2DR��1/2�
�2r2�1 − e−2DR��

e−DT�2�dr

= S0
cos��L�1 − e−2DR��1/2� − 1 + �L�1 − e−2DR��1/2�t=0

�L�1 − e−2DR��1/2
�sin�t�/t�dt

1
2�2L�1 − e−2DR��

e−DT�2�. �16�

As in the case of the sphere, this expression takes the form of the product of a ST factor � and a preexponential factor �,
as shown in Fig. 2�b� �white surfaces� in the freely rotating limit �red lines� and in the restricted diffusion limit for �=5 s �blue
lines�. For the nonrotating case, when either DR� or �r is small, � tends to unity and Eq. �16� reduces to Eq. �2�. As a
resonance from the center of a given rod will not undergo displacements due to rotational diffusion, the rod � function is seen
to decay more slowly with field strength and length than is the case of a point from the center of mass as shown in Fig. 2. In
the limit where �→0, we can expand the trigonometric functions with their Taylor series, T0=lim�L→0 Ti=LS0, yielding

ln
Ti

T0
= − DT

rod��2 + ln
cos��L�1 − e−2DR��1/2� − 1 + �L�1 − e−2DR��1/2�t=0

�L�1 − e−2DR��1/2
�sin�t�/t�dt

1
2�2L2�1 − e−2DR��

. �17�

In the limit where �L is small, we can expand this ex-
pression to give

lim
�r→0

ln
Ti

T0
= 
− DT

rod −
L2�1 − e−2DR��

36�
���2 = − Deff

rod�2� ,

�18�

Deff
rod = DT

rod +
L2�1 − e−2DR��

36�
,

and Deff is a function of � when L2 /36��DT
rod. The decay

of signal intensity again is expected to follow a single expo-

nential function, with curvature developing with a term in
�4R4.

C. Calculation of NMR diffusion data

Using theoretical models for DT and DR we are now in a
position to calculate NMR diffusion data under conditions
where these models are valid. Calculated friction factors, f ,
are related to diffusion coefficients through the Einstein re-
lation D=kBT / f , where T is the thermodynamic temperature
and kB is the Boltzmann constant. Friction factors derived
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from theory for hard spheres, rigid rods, and spheroids, and
the derived � functions for the appropriate geometries are
summarized in Table I, using the parameters stated in Sec.
IV.

Simulated NMR intensity data, scaled as 1/�2� ln Si /S0

with �=Gmax��, for rods of 2.4 �m in length are shown in
Fig. 3�a�, plotted against the applied field gradient given as
the percentage of the maximum gradient Gmax, the experi-
mental parameter that is explicitly varied during typical ex-
periments. When plotted in this way, all the data will lie on a
straight line of gradient −DT if the ST equation is obeyed, a
situation observed in the nonrotating limit for rigid rods �Fig.
3, green lines�. When a combination of rotational and trans-
lational diffusion is considered, the ST equation is no longer
sufficient and the data no longer fall on a single line. Deff can
be taken as the slope of each plot �Fig. 3�b��. This slope is
found to be a function of the diffusion delay when rotational
effects are incorporated in the model.

Diffusion data with � of 100 ms, a typical delay em-
ployed in PFGSE measurements, are shown in Fig. 3�c�.
When rotation is neglected, the diffusion data scale as ex-
pected �green surface�, with the slope decreasing with the
length. When rotations in the freely rotating limit are consid-
ered �blue surface�, for rods of length greater than �1 �m,
the slope increases as the rotational term starts to dominate
and Deff increases with rod length; the value of Deff as a

function of rod length and � is shown in Fig. 3�d�. For
longer rods, and shorter diffusion delays, Deff is significantly
larger than DT. As the displacement due to translational mo-
tion increases with time, at large values of �, the ST factor
dominates and Deff tends to DT. This is equivalent to noting
that for larger �, the NMR signals from the rapidly diffusing
rod ends will have been significantly attenuated and so the
only observable signals will be from the center of the rod. In
addition, when the system under study has a heterogeneous
size distribution, account for this can be taken by multiplying
Eq. �16� by a size distribution function and then summing
over the distribution. This procedure is described in Appen-
dix D.

III. DISCUSSION

NMR signals originating from even large macromolecu-
lar structures can be observed using conventional solution-
state experiments when regions of the structure have suffi-
cient mobility to average out local inhomogeneities and
residual dipolar interactions. Such “motional narrowing”
leads to narrow solution-state NMR linewidths that are typi-
cally observed from these mobile regions at chemical shifts
that are approximately those expected for a random coil. One
example of such a case is that of amyloid fibrils for which
NMR signals from flexible noncore regions can be

TABLE I. Translational, fT, and rotational, fR, friction factors, preexponential factors �, and limiting preexpo-
nential functions lim�r→0 � for idealized geometries. � is the viscosity, r is the radius, and L is the rod length.

Geometry fT fR � lim�r→0 �

Sphere 6��r 8��r3 sin2 �r /�2r2 1
Rod 3��L�1/ ln�L /r�−0.3�a ��L3 /3 ln�L /r�b �cos��L�−1+�L�t=0

�L �sin�t� / t�dt / 1
2�2L� L

aReference 17.
bReference 18.

FIG. 3. �Color online� Simulated NMR intensity data
and Deff for rigid rods. �a� Intensity data as a function of
%Gmax

2 for rods of length 2.4 �m, and � ranging from
30 ms to 15 s in the freely rotating limit �blue lines�,
under restricted rotation �red lines�, and in the static
limit �green lines�. As plotted, the gradient of the inten-
sity data is independent of � in the static regime. �b�
Deff against � obtained from taking the gradients of the
plots in �a�. Deff is a function of the experimental diffu-
sion delay. �c� Simulated data for �=100 ms of increas-
ing length in the freely rotating limit �blue surface� and
static limit �green surface�. �d� Variation of effective
diffusion coefficients with rod length and �. As the rod
length exceeds 1 �m, Deff in the freely rotating limit is
significantly larger than that expected from the effects
of translational diffusion alone.
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observed.19–21 While characterizing these regions using
NMR pulsed field gradients, we observed that measured ap-
parent diffusion coefficients of the fibrils were comparable to
those of monomeric protein molecules, rather than to a large
molecular assembly.

In the light of this observation we have explored theo-
retically the contribution that rotational diffusion of large
assemblies can make to NMR diffusion measurements. Ro-
tational diffusion can lead to displacements that are compa-
rable to, or even larger than, those due to translational diffu-
sion, and Deff can be seen to be a function of � and �. This
variance is qualitatively similar to the case of restricted dif-
fusion, where a similar sinc2 �R function22 to that in Eq. �13�
is observed, although it has a different origin. By observing
the variance of Deff with � and �, the results suggest that
dimensions of the macromolecular species under study can
be determined. In accord with this conclusion, application of
this approach to calculate length distributions in solutions
containing protein amyloid fibrils has, for example, has gen-
erated results that agree well with those derived from atomic
force microscopy and transmission electron microscopy
measurements.23

We can therefore conclude that NMR diffusion measure-
ments coupled with the theory described in this work can
provide a powerful method for probing noninvasively the
dimensions of large molecular assemblies in solution, and
provide a means for observing changes in such systems as a
function of time and solution conditions. We therefore be-
lieve that this strategy should be of considerable value in the
context of studies of macromolecular structure and assembly.

IV. METHODS

A. Calculations

The model was coded into C�� using functions from
the GNU Scientific Library.24 Plots were prepared using
GNUPLOT 4.0 with scripts generated by the program, and IL-

LUSTRATOR 10. The program, including routines for fitting
experimental data to the model, is available on request. All
calculations were performed assuming �=0.1 cP, T=300 K,
and �=5.4 ms. On a Bruker DRX-500, using sinusoidal bi-

polar gradients, Gmax=32 G cm−1 and so this value was used
in all calculations.

B. Monte Carlo simulations

The triangular rotational distribution functions were
simulated using a Monte Carlo method. By drawing angles
with a sinusoidal distribution between 0 and 2�, with � de-
fined by 0.5�1+cos ��=exp�−2DR��, histograms of �zrot

2

were generated using the theoretical models for DR defined
in Table I. � was varied from 100 ms to 10 s with typically
60 000 runs for each �Fig. 1�d�, inset�. The triangular distri-
butions in the freely rotating limit were obtained by drawing
start and end angles at random, on the surface of a unit
sphere.

ACKNOWLEDGMENTS

We thank Giorgio Favrin and Shang-Te Danny Hsu for
helpful discussions and the MRC, the Wellcome and Lever-
hulme Trusts, and the Cambridge Nanoscience Centre for
financial support of this work.

APPENDIX A: EXPLICIT DISPLACEMENT FUNCTIONS

Where b=2DT�, the freely rotating displacement func-
tion from Eq. �5� is given by Eq. �A1�, for a point a distance
a from the surface of a sphere, shown graphically in Fig.
1�c�,

P�z� = �
�1=0

� �
�2=0

� 1

4�b�
sin �1 sin �2e−�z − a�cos �2 − cos �1��2/b

=
1

8a2
 �b
��

�e−�z − 2a�2/b + e−�z + 2a�2/b − 2e−z2/b�

+ �2a − z�erf
2a − z
�b

� − 2z erf
 z
�b

�
+ �z + 2a�erf
2a + z

�b
�� . �A1�

APPENDIX B: EFFECTS OF RESTRICTED ROTATION
ON A SPHERE

Proof of Eq. �7� involes calculating the displacement due
to rotation of a point on a sphere undergoing Brownian
diffusion.

The vector u is initially at an angle � to the z axis. After
a time �, it has rotated through �. The end vector is given by
u(t) where angle � sweeps through the cone defined by u(0)
and �, as shown in Fig. 4,

FIG. 4. The vectors that define the rotation of a point on the surface of a
sphere.
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u„0… = cos �ez + sin �ex,

u„0…� = sin �ez − cos �ex, �B1�

v = cos�� − ��ez + sin�� − ��ex = cos �u„0…

+ sin �u„0…�.

Rotating v by � about u(0) gives u(t)=cos �u(0)
+sin ��cos �u(0)�+sin �ēy�, the position on the surface of
the sphere at time t. Calculating the square displacement
along the z axis, and averaging over the cone give

=
1

r2�
�=0

�

�z�t� − z�0��2d�

= �
�=0

�

�cos � cos � + cos � sin � sin � − cos ��2d�

= cos2 ��cos � − 1�2 + 1
2 sin2 � sin2 � . �B2�

Averaging over all start positions gives

�zrot
2 �
r2 =

��=0
� sin ��cos2 ��cos � − 1�2 + 1

2 sin2 � sin2 ��d�

��=0
� sin �d�

=
2

3
�1 − cos �� =

2

3
�1 − e−2DR�� . �B3�

This result is Eq. �7�. In the limit t→�, this expression
reduces to Eq. �4�. By comparing Eq. �7� to Eq. �4� we can
make the approximation reff=r�1−e−2DR�. At shorter diffu-
sion times, the displacement caused by rotation is reduced as
a result of the finite time required for Brownian rotational
diffusion.

APPENDIX C: DISPLACEMENT FUNCTION
FOR SPHEROIDS

An ellipsoid is defined by the equation 1=x2 /a2+y2 /b2

+z2 /c2, and the spheroid is the case were b=c=na. The case
where n1 is therefore prolate, and where n�1, the spher-
oid is oblate. Considering points along the x ,y plane, all
points are a distance r=�z2+x2=�n2a2+z2�1−n2� from the
center of mass. Each distance should be weighted by the
circumference of the circle defined by constant � as shown
in Fig. 5, and so the degeneracy is 2��n2�a2−z2�. Using Eq.
�5�, substituting r=�n2a2+z2�1−n2�,

Ptotal
spheroid��z� =

�z=0
z �n2�a2 − z2�Ptotaldz

�z=0
z �n2�a2 − z2�dz

. �C1�

The mean squared displacement is then given by

��zrot
2 �spheroid =

2

3

�0
a�n2�a2 − z2��n2a2 + z2�1 − n2��dz

�0
a�n2�a2 − z2�dz

=
1

6
�3a2n2 + a2� , �C2�

which in the limit where n→1, reduces to Eq. �6�, as ex-
pected.

APPENDIX D: EFFECTS OF A POPULATION
DISTRIBUTION ON NMR OBSERVABLES

In a heterogeneous sample, we can expect a distribution
of the lengths of rods or the diameters of spheres. Certainly
in a solution of amyloid fibrils, the lengths are observed to
vary over over several orders of magnitude. Account must be
taken of this variation if the model is used to analyze experi-
mental data. In all cases, with a prefactor ��l ,G ,� ,��, and
the Stejskal-Tanner factor ��G ,� ,� , l�, where the sample has
a distribution of lengths given by the function C�l�, the
PFGSE signal intensity decay is given by

ln
Si

S0
= ln

l=0
� C�l���G,�,�,l���G,�,�,l�

l=0
� C�l�limG→0 ��l�

. �D1�
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FIG. 5. The effect of sets of equivalent rotations on �z for ellipsoids.
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